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Backtrack Paradigm

Recursive approach is essentially travelling the whole tree defined
by the recusive relation.

The subtrees may repeat, so we need to cache intermediate
results to improve efficiency. This is exactly the essence of
dynamic programming.

For some problems, the subtrees will not overlap.
In such case, there is no better algorithm other than travelling
the entire tree. But, we can travel the entire tree smartly.
This is what backtrack technique concerns: stop visiting the
subtree if the solution won’t appear and backtrack to the
parent node

basic backtrack strategy: Domino property defined by problem
constraint
advanced backtrack strategy: branch-and-bound
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Example 1: Eight Queen Problems

Eight queens puzzle. Placing eight chess queens on an 8× 8
chessboard so that no two queens threaten each other.

a solution requires that no two queens share the same row,
column, or diagonal.

Eight queens puzzle is a special case of the more general n queens
problem: placing n non-attacking queens on an n× n chessboard.
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Counting Solutions

Solution is an n-dimension vector over [n]: exist for all natural
numbers n with the exception of n = 2, 3.

Eight queens puzzle has 92 distinct solutions, the entire
solution space is C8

64 = 4, 426, 165, 368.
If solutions that differ only by the symmetry operations of
rotation and reflection of the board are counted as one, the
puzzle has 12 solutions, called as fundamental solutions.

n fundamental all
8 12 92

9 46 352

10 92 724

. . . . . . . . .

26 2, 789, 712, 466, 510, 289 22, 317, 699, 616, 364, 044

27 29, 363, 495, 934, 315, 694 234, 907, 967, 154, 122, 528
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Background of Eight Queen Puzzle

Origin of Eight Queen Puzzle
Max Bezzel first proposed this problem in 1848, Frank Nauck gave
the first solution in 1850 and extended it to n queen puzzles. Many
mathematicians including Carl Guass also studied this problem.
Edsger Dijkstra exemplified the power of depth-first backtracking
algorithm via this problem.

There is no known formula for the exact number of solutions,
or even for its asymptotic behavior. The 27× 27 board is the
highest-order board that has been completely enumerated.

How to solve?
modeling all possible solutions as n-level leaf nodes of a tree
traversal the solution space via travelling the tree
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Demo of Quadtree for 4 Queens Puzzle

1 2 3 4

(2, 4)

(2, 4, 1)

(2, 4, 1, 3)

Travel the tree via depth-first order to find all solutions
i-th level node represent sub-i vector of solution vector
in the i-th level, the branching choice is less than n− (i− 1)

n-level leaf nodes correspond to solutions
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Example 2: 0-1 Knapsack Problem

Problem. Given n items with value vi and weight wi, as well as a
knapsack with weight capacity W . The number of each item is 1.
Find a solution that maximize the value.

Solution. n dimension vector (x1, x2, . . . , xn) ∈ {0, 1}n, xi = 1⇔
selecting item i

Nodes: (x1, x2, . . . , xk) corresponds to partial solution

Search space. In all level, the branching choice is always 2 ;
perfect binary tree with 2n leaves

Candidate solution. Satisfy constraint
∑n

i=1wixi ≤W

Optimal solution. The candidate solutions that achieve maximal
values.
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A Demo

Table: n = 4, W = 13

item 1 2 3 4

value 12 11 9 8

weight 8 6 4 3

Two candidate solutions
1 (0, 1, 1, 1): v = 28, w = 13

2 (1, 0, 1, 0): v = 21, w = 12

Optimal solution is (0, 1, 1, 1)

0 1
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Example 3: Traversal Salesman Problem

Problem. Given n cities C = {c1, c2, . . . , cn} and d(ci, cj) ∈ Z+.
Find a cycle with minimal length that travels each city once.
Solution. A permutation of (1, 2, . . . , n) — (k1, k2, . . . , kn) such
that

min
{

n−1∑
i=1

d(cki , cki+1
) + d(ckn , ck1)

}

1 2

3
4

9

5

4

7

2

13

C = {1, 2, 3, 4}
d(1, 2) = 5, d(1, 3) = 9

d(1, 4) = 4, d(2, 3) = 13

d(2, 4) = 2, d(3, 4) = 7

Solution is (1, 2, 4, 3), length of cycle is 5 + 2 + 7 + 9 = 23

10 / 41



Search Space of TSP

(1)

(1, 2)
(1, 3)

(1, 4)

(1, 2, 4, 3)

Any node can serve as the root, cause TSP is defined over an
undirected graph.
Search space. In the i-th level, the branching choice is always n− i

obtain a tree with (n− 1)! leaves ; number of all possible
permutations over {1, . . . , n} under cyclic shift
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Summary

Classical examples of Backtrack
n queens puzzle, 0-1 knapsack, TSP

Solution: vector

Search space: tree
nodes correspond to partial solutions, leaves correspond to
candidate solutions

Search order: depth-first, breadth-first, jump-hop
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Main Idea of Backtrack

Scope of application. Search or optimization problem
Search space. Tree

leaves: candidate solution
nodes: partial solution

How to search. Systematically traversal the tree: DFS, BFS, . . .

1

2
3

4

5

6 7

8 9

DFS: 1→ 2→ 3→ 5→ 8→ 9→ 6→ 7→ 4

BFS: 1→ 2→ 3→ 4→ 5→ 6→ 7→ 8→ 9
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States of Nodes
The tree is explored dynamically. Let v be the candidate node
(corresponding to partial solution) and P be the predicate that
checks if v satisfies constraint.

P (v) = 1 ⇒ expand
P (v) = 0 ⇒ backtrack to parent node

States of node
white: unexplored
gray: visiting its subtree
black: finishing the traversal of this subtree

1

2
3

4

5

6 7

8 9

DFS: 1→ 2→ 3→ 5→ 8

finished visiting: 2, 8

being visited: 1, 3, 5

unexplored: 9, 6, 7, 4
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Basic Backtrack Technique: Domino Property

At node v = (x1, . . . , xk)

P (x1, . . . , xk) = 1⇔ (x1, . . . , xk) meet some property

Example. n queens puzzle, placing k queens in positions without
attacking each other
Domino property ; admit safe backtrack

P (x1, x2, . . . , xk+1) = 1 (cards fall)⇒ P (x1, x2, . . . , xk) = 1, 0 < k < n

Converse-negative proposition

P (x1, x2, . . . , xk) = 0⇒ P (x1, x2, . . . , xk+1) = 0, 0 < k < n

k-dimension vector does not satisfy constraint ⇒ its
k + 1-dimension extension does not satisfy constraint either

guarantee that backtracking will not miss any solution
safely backtrack when P (x1, x2, . . . , xk) = 0
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A Counterexample

Find integer solutions for inequality

5x1 + 4x2 − x3 ≤ 10, 1 ≤ xk ≤ 3, k = 1, 2, 3

P (x1, . . . , xk) = 1 iff
∑k

i=1 aixi ≤ 10 does not satisfy Domino
property

5x1 + 4x2 − x3 ≤ 10 ⇏ 5x1 + 4x2 ≤ 10

Modification to satisfy Domino property: set x′3 = 3− x3

5x1 + 4x2 + x′3 ≤ 13, 1 ≤ x1, x2 ≤ 3, 0 ≤ x′3 ≤ 2

2022 级贾梦涵: 3 can be generalized to any positive integer ≥ 3.
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Summary

The premise condition to use backtrack: Domino property

General steps of backtrack algorithm
Define solution vector (include the range of every element),
(x1, x2, . . . , xn) ∈ X1 × · · · ×Xn

After fixing (x1, x2, . . . , xk−1), update admissible range of xk
as Ak ⊆ Xk using predicate P

Decide if Domino property is satisfied
Decide the search strategy: DFS, BFS
Decide the data structure to store the search path
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Backtrack Recursive Template
Algorithm 1: BackTrack(n) //output all solutions
1: for k = 1 to n do Ak ← Xk; //initialize
2: ReBack(1);

Algorithm 2: ReBack(k) //k is the current depth of recursion
1: if k = n then return solution (x1, . . . , xn);
2: else
3: while Ak ̸= ∅ do
4: xk ← Ak //according to some order;
5: Ak ← Ak − {xk};
6: update Ak+1, ReBack(k + 1);
7: end

The above is the oversimplified pseudocode.
One must be careful when dealing with domains Ak and
solution vector x when coding (value transfer vs. reference
transfer)
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Backtrack Iterative Template

Algorithm 3: BackTrack(n) //all solutions
1: for k = 1 to n do Ak ← Xk; //initialize
2: k ← 1;
3: while Ak ̸= ∅ do
4: xk ← Ak; Ak ← Ak − {xk};
5: if k < n then k ← k + 1;
6: else (x1, x2, . . . , xn) is solution;
7: end
8: if k > 1 then k ← k − 1; goto 3;

Ak is determined by (x1, . . . , xk−1)

The algorithm terminates when all Ai are empty. Otherwise,
it will backtrack (line 8).
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Loading Problem

Problem. Given n containers with weight wi, two boats with
weight capacity W1 and W2 s.t. w1 + · · ·+ wn ≤W1 +W2.
Goal. If there exists a scheme to load the n containers on two
boats. Please give a scheme if it is solvable.

Example
w1 = 90, w2 = 80, w3 = 40, w4 = 30, w5 = 20, w6 = 12, w7 =
10, W1 = 152, W2 = 130

Solution: load 1, 3, 6, 7 on boat 1 and the rest on boat 2
Main idea: Let the total weights be W .

1 Load on boat 1 first. Using backtrack to find a solution that
maximizes W ∗

1 , where W ∗
1 is the real capacity.

2 Then check if W −W ∗
1 ≤W2. Return “yes” if true and “no”

otherwise.
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Pseudocode
Algorithm 4: Loading(W1)

1: W ∗
1 ← 0; C ← 0; i← 1;

2: while i ≤ n do //line 3-4: whether to load container i
3: if C +wi ≤W1 then C ← C +wi, x[i]← 1, i = i+ 1 ;
4: else x[i]← 0, i← i+ 1;
5: end
6: if W ∗

1 < C then record solution, W ∗
1 ← C;

7: while i > 1 and x[i] = 0 do i = i− 1; //find a backtrack
node

8: if i = 0 then return optimal solution; //backtrack to root
9: else x[i]← 0; C ← C − wi; i = i+ 1, goto 2 ; //x[i] = 1:

continue to search

line 7-9: find a backtrack point
1 line 8: have travelled all the tree and back to the root
2 line 9: find a left branch, means there still exist unexplored

right branch ; change it to right branch
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Demo

w1 = 90, w2 = 80, w3 = 40, w4 = 30, w5 = 20, w6 = 12, w7 = 10

W1 = 152, W2 = 130

90

80
0

40

30
0

20
0

12
0

150

10 0

12

152

10

it is loadable
1, 3, 6, 7 on boat 1
2, 4, 5 on boat 2

time complexity W (n) = O(2n)
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Graph Coloring Problem

Problem. Undirected graph G and m colors. Coloring the vertices
to ensure the connected two vertices with different color.
Goal. Output all possible coloring schemes. Output “no” if there is
none.

1

6
7

2

5

4
3

1

6 7
2

5

4
3

n = 7,m = 3
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Algorithm Design

Input. G = (V,E), V = {1, 2, . . . , n}, color set {1, 2, . . . ,m}
Solution vector. (x1, x2, . . . , xn), xi ∈ [m]

(x1, . . . , xk) gives partial solution for vertice set {1, 2, . . . , k}
Search tree. m-fork tree
Constraint. At node (x1, . . . , xk), the set of available colors for
node k + 1 is not empty.

If the nodes in adjacent list have used up m colors, then node
k + 1 is not colorable. In this case, back to parent node.
(Domino property obviously holds)

Search strategy: DFS
Time complexity: O(nmn)

the depth of tree is n ⇒ totally at most mn nodes
every step need to find usable colors ⇒ require O(n) cost
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Demo

1

6 7
2

5

4
3

1

2

3

4

5

6

7

the first solution vector: (1, 2, 1, 3, 1, 2, 3)
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The Structure of Search Tree
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The first solution vector: (1, 2, 1, 3, 1, 2, 3)
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Complexity Analysis

Time complexity: O(nmn)

Symmetry ; only need to search at most 1/6 solution space
the permutation over (1, 2, 3) is 6 ; for any specific solution,
there exist 6 homogeneous solution
level-2 has 2-fold solution (e.g. color blue and green are
exchangeable), level-1 has 3-fold solution (node 1 can pick
red, green or blue); the closer to the root, the more choice of
replacement.

Additional reasoning also helps to reduce search scope
Example: if node 1, 2, 3 have been colored differently, then
node 7 is definitely non-colorable because it connects with
node 1, 2, 3 ; backtrack from this node
Need trade-off between search and decide
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Applications of Graph Coloring

Arrangement of meeting room
There are n events to be arranged, if the slots of event i and event
j overlap, we say i and j are not compatible. How to arrange these
events with smallest number of meeting rooms?

Modeling
Treat event as node, if i, j are not compatible, then add an
edge between i and j.
Treat meeting rooms as colors.

The arrangement problem is transformed to finding a coloring
scheme with smallest colors.
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Estimation of Leaves

Sometimes, we need to know the size of problems (captured by the
number of nodes)

Finding the exact number may require to travel the whole tree
exhaustively, which is equivalent to solve the problem.

Monte Carlo method
1 Choose a random path from root until there is no more

branching, i.e., randomly and sequentially assign values to
x1, x2, . . . , until the vector cannot be further expanded.

2 Assume other |Ai| − 1 branches has the same path as selected
one, calculate the nodes of search tree

3 Repeat step 1 and 2, compute the average number of nodes.
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Estimate n Queen Puzzle

Algorithm 5: MonteCarlo(n, t)
Input: n = # number of queens, t = # number of sampling
Output: ℓ, average number of node of t times sampling

1: ℓ← 0;
2: for i = 1 to t do //sampling t times
3: m← Estimate(n); //number of nodes;
4: ℓ← ℓ+m;
5: end
6: ℓ← ℓ/t;
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One Sampling

Parameter
ℓ is the total number of nodes
k is the depth
rprev: # (nodes on the previous level)
rcurrent: # (nodes on the current level)
rcurrent = rprev ×#(branches)
n is the depth of tree

Computation oder: randomly select until reaching the leaves

rprev = 2, rcurrent = rprev · 3 = 6
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Pseudocode

Algorithm 6: Estimate(n)
1: ℓ← 1; rprev ← 1; k ← 1; //the root node;
2: while k ≤ n do
3: if Ak = ∅ then return ℓ; //no more branch
4: xk

R←− Ak //randomly select a branch;
5: rcurrent ← rprev × |Ak| //number of nodes on k level;
6: ℓ← ℓ+ rcurrent ;
7: rprev ← rcurrent;
8: k ← k + 1;
9: end
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Real Case: 4-Queens Puzzle

17 nodes
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Random Selected Path 1

case 1: (1, 4, 2) 21 nodes
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Randomly Selected Path 2

case 2: (2, 4, 1, 3) 17 nodes
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Randomly Selected Path 3

case 3: (1, 3) 13 nodes
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Estimation Result

Suppose sampling four times
case 1: 1

case 2: 1

case 3: 2

Average number of nodes: (21× 1 + 17× 1 + 13× 2)/4 = 16

The real number of nodes: 17

more samplings will make the estimation approaches the real
number
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